
SMOOTH MANIFOLDS FALL 2023 - HOMEWORK 4

SOLUTIONS

Problem 1. Let X be a smooth manifold and f : X → R by C∞. Show that T ∗X is a vector
bundle over X. Furthermore, show that the family of functions de�ned by θx(v) = Dv(f) is a
C∞ section of T ∗M , where v ∈ TxM and Dv is the derivation determined by v. θx is called the
di�erential of f and is often written df .

Solution. We build charts for T ∗X explicitly. Let ϕ : U → Rn be a chart of X. Let Û ⊂ T ∗X be
the set of linear functionals on TxX for some x ∈ U , and de�ne ϕ̂ : Û → Rn × Rn by

ϕ̂(θ) = (ϕ(x), θ(dϕ−1(ϕ(x))(e1)), . . . , θ(dϕ
−1(ϕ(x))(en)).

Notice that ϕ̂(θ1) = ϕ̂(θ2) if and only if θ1 and θ2 are de�ned on the same vector space Tθi(x),

and θ1 and θ2 agree on a basis (since dϕ−1(ϕ(x)) is an isomorphism at every x). Hence, θ1 = θ2 and
ϕ̂ is bijective. It is also clear that ϕ̂ is linear when restricted to a single vector space T ∗yM , y ∈ U .

We show that transition maps ϕ̂ ◦ ψ̂−1 are C∞. Indeed, we �rst note that if Ax = dψ(x) ◦
dϕ−1(ϕ(x)), θ ◦ dϕ−1(ϕ(x)) = θ ◦ dψ−1(ψ(x))Ax.

ϕ̂ ◦ ψ̂−1(x, v) = (ϕ ◦ ψ−1(x), Axv).

Indeed, if θ(dψ−1(ψ(x))ei) = vi, and wi = θ(dϕ−1(ϕ(x))ei) = θ(dψ−1(ψ(x))Axei), then

wi = θ

dψ−1(ψ(x))

n∑
j=1

(Ax)jiei

 =

n∑
j=1

(Ax)jivi

It is now clear that ϕ̂ ◦ ψ̂−1 is C∞.
Finally, let f : X → R be C∞, and θx(v) = Dv(f) for v ∈ TxM as described. First, note that this

is a section of T ∗X, since each θx is a linear function on TxM for every x ∈M . To see smoothness,
we check with charts. Let ϕ be a chart of X and ϕ̂ be the corresponding chart of T ∗X. Then we
must show that ϕ̂ ◦ θ ◦ ϕ−1 is C∞ from U to Û , where U is the range of ϕ (where θ(x) = θ(x, v).
Indeed, we claim that

(0.1) ϕ̂ ◦ θ ◦ ϕ−1(x) = (x,∇(f ◦ ϕ−1)(x))

where ∇f is the usual gradient on Rn. Indeed, observe that

ϕ̂ ◦ θ(y) = (ϕ(y), Ddϕ−1(e1))(f)), ..., Ddϕ−1(en))(f))).

Notice also that by the chain rule, Ddϕ−1(ei)(f) =
∂(f ◦ ϕ−1)

∂i
, so the last n components are

exactly ∇(f ◦ ϕ−1)(y). Finally, we must evaluate this function at ϕ−1(x), yielding (0.1). Since all
partial derviatives of a C∞ function are again C∞, it follows that the section is C∞. �
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Problem 2. Show that if g : R → R is a C∞ function such that g(z) 6= 0 for any z ∈ R, then the
integral curves of the vector �eld V = xg(xy) ∂

∂x − yg(xy) ∂∂y on R2 \ {0} are the level sets of the

function F (x, y) = xy. [Hint: Show that the level sets of F and integral curves of V have the same
tangent bundles]

Solution. Fix p ∈ R2 and let γp(t) be the integral curve of x under V . Then consider the function
f : R→ R de�ned by f(t) = F (γp(t)). It follows that

f ′(t) = dF (γ′p(t)) = dF (V (γp(t)) =
(
y x

)( xtgt
−ytgt

)
= xtytgt − ytxtgt = 0

where γp(t) = (xt, yt). It follows that γp(t) is an immersed 1-manifold contained in F−1(F (p)),
which is a 1-manifold by the submersion theorem. Thus, it must be equal to the connected compo-
nent of F−1(F (p)) containing p, as the curves γp(t) are exactly charts of the manifold! �

Problem 3. Let F : (−ε, ε) × X → X be any C∞ map such that F (t, F (s, x)) = F (t + s, x)
whenever |t| , |s| and |t+ s| are all less than ε.

(i) Show that V (x) := ∂
∂t |t=0F (t, x) is a C∞ vector �eld on X.

(ii) Show that F is the �ow generated by V .
(iii) Show that F extends uniquely to a globally de�ned �ow F : R × M → M satisfying the

�ow equation [Hint: If k ∈ Z and δ ∈ (0, ε), de�ne F (kε/2 + δ, x) = T k(F (δ, x)), where
T (x) = F (ε/2, x)].

(iv) Which assumption(s) is/are not satis�ed for �ows which reach the boundary in �nite time?

Solution.

(i) To see that V is a C∞ vector �eld, we work in charts. Let ϕ : U → Rn be a chart of X, so
that ϕ̄ : (−ε, ε) × U → R × Rn de�ned by ϕ̄(t, x) = (t, ϕ(x)) is a chart of (−ε, ε) ×X. Then

V (x) = dϕ−1
(
∂F

∂t
F (x, 0)

)
. Since F is C∞, the partial derivative is a C∞ function taking

values in Rn, which we identify with Tϕ(x)Rn. Hence, V is C∞.
(ii) That F is the �ow generated by V follows from the de�nition.
(iii) Observe that k is a discrete parameter and δ is a continuous parameter in the de�nition of the

global extension of F . For every t ∈ R, there exists a value of k and δ0 such that kε/2+δ0 = t,
and δ ∈ (0, ε) can vary both positively and negatively. Furthermore, for a �xed k, F is a
C∞ in x and δ since it is the composition of the time ε/2-map T (which is C∞) and the �ow
F (δ, x), and for every t. Thus, it is C∞ once it is well-de�ned.

To see that it is well-de�ned, note that there are at most two ways to represent a real
number t and k1ε/2 + δ1 and k2ε/2 + δ2, since in this case, (k1 − k2)ε/2 = δ1 − δ2. Since
−ε < δ1 − δ2 < ε, it follows that |k1 − k2| ≤ 1, as the inequalities are strict. Assume without
loss of generality that k2 = k1 + 1, so that δ2 = δ1 − ε/2. Then

T k2(F (δ2, x)) = T k1+1(F (δ1−ε/2, x)) = T k1TF (−ε/2, F (δ1, x)) = T k1TT−1F (δ1, x)) = T k1F (δ1, x).

Thus, F is well-de�ned.

�

Problem 4. Show that if X is a compact manifold and V is a smooth vector �eld onM , then there
exists a globally de�ned �ow ϕVt [Hint: Fix a �nite open cover of charts of X, and let T (x) be the
largest ε > 0 such that the �ow is de�ned on (−ε, ε) in some chart from the �nite cover. Show that
T is continuous and positive, hence bounded below. Apply the previous problem.]
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Solution. Let U be an open cover of X by domains of charts. For each ε > 0, let Vε ⊂ X denote
the set of points for which the �ow is de�ned for time at least ε in a chart from the open cover U .
{Vε : ε > 0} is another open cover of X. Since it is nested in ε, there exists ε0 such that Vε0 = X.
Thus, we have veri�ed the assumptions of Problem 3, as there is a uniform time for which the �ow
is de�ned for all x inX. �
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