SMOOTH MANIFOLDS FALL 2023 - HOMEWORK 4

SOLUTIONS

Problem 1. Let X be a smooth manifold and $f: X \rightarrow \mathbb{R}$ by C^{∞}. Show that $T^{*} X$ is a vector bundle over X. Furthermore, show that the family of functions defined by $\theta_{x}(v)=D_{v}(f)$ is a C^{∞} section of $T^{*} M$, where $v \in T_{x} M$ and D_{v} is the derivation determined by $v . \theta_{x}$ is called the differential of f and is often written $d f$.

Solution. We build charts for $T^{*} X$ explicitly. Let $\varphi: U \rightarrow \mathbb{R}^{n}$ be a chart of X. Let $\hat{U} \subset T^{*} X$ be the set of linear functionals on $T_{x} X$ for some $x \in U$, and define $\hat{\varphi}: \hat{U} \rightarrow \mathbb{R}^{n} \times \mathbb{R}^{n}$ by

$$
\hat{\varphi}(\theta)=\left(\varphi(x), \theta\left(d \varphi^{-1}(\varphi(x))\left(e_{1}\right)\right), \ldots, \theta\left(d \varphi^{-1}(\varphi(x))\left(e_{n}\right)\right) .\right.
$$

Notice that $\hat{\varphi}\left(\theta_{1}\right)=\hat{\varphi}\left(\theta_{2}\right)$ if and only if θ_{1} and θ_{2} are defined on the same vector space $T_{\theta_{i}(x)}$, and θ_{1} and θ_{2} agree on a basis (since $d \varphi^{-1}(\varphi(x))$ is an isomorphism at every x). Hence, $\theta_{1}=\theta_{2}$ and $\hat{\varphi}$ is bijective. It is also clear that $\hat{\varphi}$ is linear when restricted to a single vector space $T_{y}^{*} M, y \in U$.

We show that transition maps $\hat{\varphi} \circ \hat{\psi}^{-1}$ are C^{∞}. Indeed, we first note that if $A_{x}=d \psi(x) \circ$ $d \varphi^{-1}(\varphi(x)), \theta \circ d \varphi^{-1}(\varphi(x))=\theta \circ d \psi^{-1}(\psi(x)) A_{x}$.

$$
\hat{\varphi} \circ \hat{\psi}^{-1}(x, v)=\left(\varphi \circ \psi^{-1}(x), A_{x} v\right)
$$

Indeed, if $\theta\left(d \psi^{-1}(\psi(x)) e_{i}\right)=v_{i}$, and $w_{i}=\theta\left(d \varphi^{-1}(\varphi(x)) e_{i}\right)=\theta\left(d \psi^{-1}(\psi(x)) A_{x} e_{i}\right)$, then

$$
w_{i}=\theta\left(d \psi^{-1}(\psi(x)) \sum_{j=1}^{n}\left(A_{x}\right)_{j i} e_{i}\right)=\sum_{j=1}^{n}\left(A_{x}\right)_{j i} v_{i}
$$

It is now clear that $\hat{\varphi} \circ \hat{\psi}^{-1}$ is C^{∞}.
Finally, let $f: X \rightarrow \mathbb{R}$ be C^{∞}, and $\theta_{x}(v)=D_{v}(f)$ for $v \in T_{x} M$ as described. First, note that this is a section of $T^{*} X$, since each θ_{x} is a linear function on $T_{x} M$ for every $x \in M$. To see smoothness, we check with charts. Let φ be a chart of X and $\hat{\varphi}$ be the corresponding chart of $T^{*} X$. Then we must show that $\hat{\varphi} \circ \theta \circ \varphi^{-1}$ is C^{∞} from U to \hat{U}, where U is the range of φ (where $\theta(x)=\theta(x, v)$. Indeed, we claim that

$$
\begin{equation*}
\hat{\varphi} \circ \theta \circ \varphi^{-1}(x)=\left(x, \nabla\left(f \circ \varphi^{-1}\right)(x)\right) \tag{0.1}
\end{equation*}
$$

where ∇f is the usual gradient on \mathbb{R}^{n}. Indeed, observe that

$$
\left.\left.\hat{\varphi} \circ \theta(y)=\left(\varphi(y), D_{\left.d \varphi^{-1}\left(e_{1}\right)\right)}(f)\right), \ldots, D_{\left.d \varphi^{-1}\left(e_{n}\right)\right)}(f)\right)\right) .
$$

Notice also that by the chain rule, $D_{d \varphi^{-1}\left(e_{i}\right)}(f)=\frac{\partial\left(f \circ \varphi^{-1}\right)}{\partial i}$, so the last n components are exactly $\nabla\left(f \circ \varphi^{-1}\right)(y)$. Finally, we must evaluate this function at $\varphi^{-1}(x)$, yielding (0.1). Since all partial derviatives of a C^{∞} function are again C^{∞}, it follows that the section is C^{∞}.

Problem 2. Show that if $g: \mathbb{R} \rightarrow \mathbb{R}$ is a C^{∞} function such that $g(z) \neq 0$ for any $z \in \mathbb{R}$, then the integral curves of the vector field $V=x g(x y) \frac{\partial}{\partial x}-y g(x y) \frac{\partial}{\partial y}$ on $\mathbb{R}^{2} \backslash\{0\}$ are the level sets of the function $F(x, y)=x y$. [Hint: Show that the level sets of F and integral curves of V have the same tangent bundles]

Solution. Fix $p \in \mathbb{R}^{2}$ and let $\gamma_{p}(t)$ be the integral curve of x under V. Then consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(t)=F\left(\gamma_{p}(t)\right)$. It follows that

$$
f^{\prime}(t)=d F\left(\gamma_{p}^{\prime}(t)\right)=d F\left(V\left(\gamma_{p}(t)\right)=\left(\begin{array}{ll}
y & x
\end{array}\right)\binom{x_{t} g_{t}}{-y_{t} g_{t}}=x_{t} y_{t} g_{t}-y_{t} x_{t} g_{t}=0\right.
$$

where $\gamma_{p}(t)=\left(x_{t}, y_{t}\right)$. It follows that $\gamma_{p}(t)$ is an immersed 1-manifold contained in $F^{-1}(F(p))$, which is a 1 -manifold by the submersion theorem. Thus, it must be equal to the connected component of $F^{-1}(F(p))$ containing p, as the curves $\gamma_{p}(t)$ are exactly charts of the manifold!

Problem 3. Let $F:(-\varepsilon, \varepsilon) \times X \rightarrow X$ be any C^{∞} map such that $F(t, F(s, x))=F(t+s, x)$ whenever $|t|,|s|$ and $|t+s|$ are all less than ε.
(i) Show that $V(x):=\left.\frac{\partial}{\partial t}\right|_{t=0} F(t, x)$ is a C^{∞} vector field on X.
(ii) Show that F is the flow generated by V.
(iii) Show that F extends uniquely to a globally defined flow $F: \mathbb{R} \times M \rightarrow M$ satisfying the flow equation [Hint: If $k \in \mathbb{Z}$ and $\delta \in(0, \varepsilon)$, define $F(k \varepsilon / 2+\delta, x)=T^{k}(F(\delta, x))$, where $T(x)=F(\varepsilon / 2, x)]$.
(iv) Which assumption(s) is/are not satisfied for flows which reach the boundary in finite time?

Solution.

(i) To see that V is a C^{∞} vector field, we work in charts. Let $\varphi: U \rightarrow \mathbb{R}^{n}$ be a chart of X, so that $\bar{\varphi}:(-\varepsilon, \varepsilon) \times U \rightarrow \mathbb{R} \times \mathbb{R}^{n}$ defined by $\bar{\varphi}(t, x)=(t, \varphi(x))$ is a chart of $(-\varepsilon, \varepsilon) \times X$. Then $V(x)=d \varphi^{-1}\left(\frac{\partial F}{\partial t} F(x, 0)\right)$. Since F is C^{∞}, the partial derivative is a C^{∞} function taking values in \mathbb{R}^{n}, which we identify with $T_{\varphi(x)} \mathbb{R}^{n}$. Hence, V is C^{∞}.
(ii) That F is the flow generated by V follows from the definition.
(iii) Observe that k is a discrete parameter and δ is a continuous parameter in the definition of the global extension of F. For every $t \in \mathbb{R}$, there exists a value of k and δ_{0} such that $k \varepsilon / 2+\delta_{0}=t$, and $\delta \in(0, \varepsilon)$ can vary both positively and negatively. Furthermore, for a fixed k, F is a C^{∞} in x and δ since it is the composition of the time $\varepsilon / 2$-map T (which is C^{∞}) and the flow $F(\delta, x)$, and for every t. Thus, it is C^{∞} once it is well-defined.

To see that it is well-defined, note that there are at most two ways to represent a real number t and $k_{1} \varepsilon / 2+\delta_{1}$ and $k_{2} \varepsilon / 2+\delta_{2}$, since in this case, $\left(k_{1}-k_{2}\right) \varepsilon / 2=\delta_{1}-\delta_{2}$. Since $-\varepsilon<\delta_{1}-\delta_{2}<\varepsilon$, it follows that $\left|k_{1}-k_{2}\right| \leq 1$, as the inequalities are strict. Assume without loss of generality that $k_{2}=k_{1}+1$, so that $\delta_{2}=\delta_{1}-\varepsilon / 2$. Then
$\left.T^{k_{2}}\left(F\left(\delta_{2}, x\right)\right)=T^{k_{1}+1}\left(F\left(\delta_{1}-\varepsilon / 2, x\right)\right)=T^{k_{1}} T F\left(-\varepsilon / 2, F\left(\delta_{1}, x\right)\right)=T^{k_{1}} T T^{-1} F\left(\delta_{1}, x\right)\right)=T^{k_{1}} F\left(\delta_{1}, x\right)$.
Thus, F is well-defined.

Problem 4. Show that if X is a compact manifold and V is a smooth vector field on M, then there exists a globally defined flow φ_{t}^{V} [Hint: Fix a finite open cover of charts of X, and let $T(x)$ be the largest $\varepsilon>0$ such that the flow is defined on $(-\varepsilon, \varepsilon)$ in some chart from the finite cover. Show that T is continuous and positive, hence bounded below. Apply the previous problem.]

Solution. Let \mathcal{U} be an open cover of X by domains of charts. For each $\varepsilon>0$, let $V_{\varepsilon} \subset X$ denote the set of points for which the flow is defined for time at least ε in a chart from the open cover \mathcal{U}. $\left\{V_{\varepsilon}: \varepsilon>0\right\}$ is another open cover of X. Since it is nested in ε, there exists ε_{0} such that $V_{\varepsilon_{0}}=X$. Thus, we have verified the assumptions of Problem 3, as there is a uniform time for which the flow is defined for all $x \operatorname{inX}$.

